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Abstract 

In this article we derive a form of the recursive  Newton-Euler  algorithm that 
satisfies the skew-symmetry property k - 2C = -(k - 2C) required  in a va- 
riety of nonlinear  control  laws  occurring throughout the fields  of robotics and 
multibody  dynamics.  (Here M denotes the mass matrix of the multibody  sys- 
tem  and C denotes the Coriolis/centrifugal matrix.) We  show that  the recently 
developed  formulation of multibody  dynamics  based  on Lie groups and Lie al- 
gebras given  in [ll], [12] can  be  modified to accommodate the skew-symmetry 
requirement.  Specifically, we demonstrate that explicit  block-triangular factor- 
izations of both M and C are embedded  within the  structure of the recursive 
algorithm. Furthermore, the factorization of the mass matrix M can  be  differ- 
entiated explicitly  with  respect to time. The resulting  expressions  for M ,  k ,  
and C immediately  lead to a proof  based  entirely  on  high-level matrix manip- 
ulations demonstrating the skew-symmetry of k - 2C. 

T 

1 Introduction 
As demonstrated  in  any  standard  text  on  analytical  dynamics (e.g., [3], [SI), the 
equation of motion of a large class of mechanical  systems  (i.e., natural systems - 
defined as  systems whose kinetic  energy  is of the form ; iTM(q)q)  can be expressed 
as follows 

M ( q ) i  t C(Q7 414. t #+I) = 7 (1) 

where q = ( q I , q 2 ,  , qn) E !Rn denotes a vector of generalized  coordinates  describing 
the time evolution of the system, M ( q )  E !Rnxn is the symmetric  positive  definite  mass 
matrix, C ( q , i )  E !RnXn is the Coriolis-centrifugal matrix, $ ( q )  E gn is the vector of 
gravity  terms,  and 7 E denotes the applied  loading. It is well known (e.g., see 
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[10],[14]) that  although  the  matrix-vector  product CQ is unique for a given multibody 
system,  the  matrix C is not.  This is a  consequence of the fact that  the Coriolis matrix 
C is itself a function of q .  

For the  purpose of dynamic  simulation (;.e., determining  the  motion of the  system 
via numerical  integration when the  applied loading is specified) the non-uniqueness of 
the  Coriolis/centrifugal  matrix is not  an  important issue as  any  admissible C matrix 
leads to  same  acceleration vector q. (In  fact,  there is no  reason at all to express  the 
Coriolis vector as a matrix-vector  product for dynamic  simulation.) However,  in a 
variety of nonlinear  control  problems in  robotics and  multibody  dynamics  the choice 
of the  Coriolis/centrifugal  matrix C is critical. For example, the skew-symmetry of 
k - 2 C  plays an  important role in developing Lyapunov  functions for control laws used 
in  the  control of large scale flexible space  structures [7]. As another  example,  Slotine 
and Li [14] have  developed a globally stable  adaptive control law for robotic  systems 
that  results  in  asymptotic  tracking of a desired  reference trajectory q d ( t )  E Xn. The 
stability proof of the control law requires that s T ( k  - 2C)s = 0 where s E Xn is 
a function of both q and 4. (See [14] for more  details.) As a result, C must  be 
constructed  in  such a way to render (k - 2C) skew-symmetric. As an aside, we note 
an  important  fact which  has  caused  some confusion in the  past, viz., if s = 4 then 
iT(k - 2C)i  = 0 irrespective of the  skew-symmetry of k - 2C. This  statement is a 
property of finite-dimensional natural  systems  and  its proof can  be  found in [lo] and 
[14]. As a result, it is only  in  situations  where (k - 2C) is pre  and post multiplied 
by a vector different from 4 that C must  be carefully defined. 

It is  well known ([lo], [14]) that if C is defined as 

where rijk denote  the Christoflel symbols of the first kind 

and M;j are  the  elements of the mass  matrix,  then k! - 2C will be  skew-symmetric. 
A major  drawback of using equation (2) to  construct C is that  the  entries of the 
mass  matrix must be known a priori and in  an explicit fashion in  order to  compute 
the  partial derivatives.  Anyone  who has derived the mass matrix for even a simple 
multibody  system however, will have  experienced  firsthand the  enormous  complexity 
of the  resulting  equations. (See [l] for an  example of the  symbolic  complexity of 
the  mass  matrix of a PUMA 560 robot - a system  with relatively simple  open  chain 
topology!) A second drawback  associated with  the  use of equation (2) is that  this 
particular definition of C is intimately  related  to a Lagrangian  formulation of the 
equations of motion [3]. For many  applications  in  multibody  dynamics  and  control 
the  dynamic  equations  are  expressed recursively (usually  in  terms of Newton’s  second 
law and Euler’s equations)  and  the  above definition of C does not  readily apply. 

The  remainder of the  article is organized as follows. After a brief review of Lie 
theory, we demonstrate that the recursive formulation of multibody  dynamics  based 

2 



on Lie groups given in [ll] can  be  recast  into global matrix  form  via a series of simple 
linear  algebraic  operations.  In  the  resulting  set of closed-form equations,  the  mass 
matrix  and  Coriolis/centrigual  matrix  admit concise block-triangular  factorizations 
in  which the  kinematic  and  dynamic  parameters of the  robot  appear  transparently. 
Further,  the  factorization of the mass  matrix  can  be  differentiated  explicitly  with 
respect to  time.  These high-level matrix expressions for M ,  and C immediately 
lead to a simple  matrix expression for k - 2 C .  Unfortunately,  the  Coriolis/centrifugal 
matrix C associated  with  the recursive algorithm in its original form does not  render 
k - 2C skew-symmetric.  Next, we demonstrate  that  the  equations of motion of 
the  entire  system  inherit  the  skew-symmetry  property  from  the  equations of motion 
of each  individual body. (This  idea was developed  independently by Lin e t  al [5] 
although we present a far  more  transparent  derivation.) Using this  idea we show how 
to  construct a skew-symmetric  form of the recursive  Newton-Euler  algorithm.  The 
modified recursive algorithm is then  recast  into global matrix  form  and a new matrix 
factorization of the Coriolis/centrifugal matrix C is determined. We then  present a 
proof demonstrating  the  skew-symmetry of a-  2C based  entirely  on  simple  matrix 
manipulations.  This is in contrast to  the proof given by Lin e t  al in [5] which involves 
index  notation  and  multiple  summations. 

2 Mathematical Background 

2.1 SE(3), s e ( 3 ) ,  and se(3)* 
In this section we give a brief review of the  material  from Lie theory  needed  in  the 
sequel. The  reader is referred to [9], [12], [4] for a more  comprehensive discussion. 

Given an inertially fixed reference frame F ,  the position and  orientation of a 
rigid body X = (0, b)  is described by an  element of the Special  Euclidean  Group of 
rigid-body  motions,  denoted SE(3) ,  consisting of matrices of the  form 

where 0 E SO(3) and b E g 3 .  Here SO(3) denotes  the  group of 3 x 3 proper 
orthogonal  matrices. SE(3) has  the  structure of both a mathematical  group  under 
matrix  multiplication  and a differentiable  manifold and is therefore a (matrix) Lie 
Group. The generalized velocity of a rigid body x = (w, v )  is described by an  element 
of the Lie algebra of SE(3) ,  denoted s e ( 3 ) ,  consisting of matrices of the  form 

where 

[ [w] = w3 0 - w 1 ]  

0 -w3 w2 

-w2 w1 0 
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and v E $I3. The Lie algebra se(3) is the  tangent  space of SE(3) at the  identity 
element of the  group. 

Generalized forces acting  on a rigid body F = (m,  f )  are  described by elements 
of the  dual  space  to  se(3),  denoted  se(3)*.  The  dual  space  se(3)* is the  space of 
linear  functionals on se(3): i.e., if V = (w ,  v )  E se(3)  and F = (m,  f )  E se(3)*  then 
F : se(3) H X is given by F ( V )  = FTV = mTw + f T v .  Note that F ( V )  has  units of 
power. 

An element of a Lie group  can also be identified with a linear  mapping  between 
its Lie algebra  via  the adjoint  representation. If X = (0, b )  is an  element of SE(3) ,  
then  its  adjoint  map Adx : se(3) H se(3)  admits  the 6 x 6 matrix  representation 

Adx(z)  = [ [ b ] 0  0 ] [ : ] 0 0  

where [b] denotes  the 3 x 3 skew-symmetric  matrix  representation of b E X3. Phys- 
ically, the  adjoint  mapping describes how generalized velocities transform  under a 
change of reference frame given by X = (0,  b) .  For example, if & = (w2, v2) denotes 
the generalized  velocity of a rigid body  with respect to a reference frame M2, and 

= (wl,vl)  denotes  the generalized  velocity of the  same  body  with  respect  to a 
reference frame Adl, and X,, = (el2, b12) represent  the position and  orientation of 
M, relative  to Ml, then & = Adx,,&. It is easily verified that Ad;' = Adx-1 and 
Ad* Ady = Adxy for any X ,  Y E SE(  3). 

The  dual  operator Adx : se(3)* t+ se(3)*  admits  the  matrix  representation given 
by the  transpose of Adx; i.e., if z = ( m , f )  E se(3)*,  then 

Adl;;(z) = 

Physically, the  dual  adjoint  mapping describes how generalized forces transform  under 
a  change of reference frame given by X = (0, b).  For example, if F2 = (m2, f 2 )  denotes 
the generalized  force acting  on a rigid body  with  respect  to a reference frame M2, and 
F1 = (ml,  f 1 )  denotes  the generalized  force acting  on  the  same  body  with  respect  to 
a reference frame Ml, and X12 = ( 0 1 2 ,  b12) represents  the  position  and  orientation of 
Ad2 relative  to MI, then F2 = Adx,,F1. 

Elements of the Lie algebra  can also be identified with a linear  mapping  between 
the Lie algebra  and itself via  the Lie bracket. On  matrix Lie algebras  the Lie bracket 
is given by the  matrix  commutator: viz., if A, B E se(3),  then [A, B] = AB - B A  E 
se(3). Given z E se(3)  its  adjoint  representation is given by the linear map defined 
by ad,(y)  = [ x ,  y ] .  For x = (wl, v1) and y = (w2, v2) E se(3),  the  adjoint  map  admits 
the following 6 x 6 matrix  representation: 

Similarly, the  matrix  representation of the  dual  operator ad: : se(3)* H se(3)* is the 
matrix  transpose of ad,: 
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Physically, the  mappings &(y) and ad:(z) can  be  thought of as  generalizations of 
the  standard cross product  operation  to se(3)  and se(3)* respectively. 

2.2 The Product of Exponentials Formula 
We  now briefly review the  product of exponentials (POE) formula for the  kinematic 
analysis of  of multibody  systems. For a more  detailed discussion see [a] or  [9]. If 
a dextral reference frame is fixed on  each  body  in a multibody  system  where  each 
body is connected via single degree of freedom  joints,  then  the  element of S E ( 3 )  
describing the  position  and  orientation of frame i relative to  frame i - 1 is given 
byfi-1,; = M;epiqi, where M; E S E ( 3 ) ,  P; E se(3) ,  and q; E iJ? is the joint  variable for 
link i .  Physically f;-l,; represents  the  coordinate  transformation across a rigid body 
in a multibody  system.  The  frame fixed at the  tip of the  kinematic  chain is then 
related  to  that of the base by the  product 

The matrix  exponentials  in  the  above  formula  can  be  computed  in  closed-form  via 
the following result: Let (w ,  v )  E se(3)  where w has  unit  length.  Then for any $ E 3, 

is an  element of S E ( 3 ) ,  where 

3 The Equations of Motion 

3.1 Recursive Newton-Euler Algorithm 
We  now review the Lie group  based  recursive  formulation of dynamics  as given in [ll] 
and [la]. The  idea  behind  the recursive formulation is a two-stage  iterative process. 
In  the  outward  iterative  stage  the generalized velocities and  accelerations of each 
body  are  propagated  from  the  base  to  the  tip,  each  quantity  expressed  in local body 
fixed coordinates.  In  the  inward  iterative  stage  the generalized forces are  propagated 
backward  from  the  tip  body  to  the  base  body, also expressed  with  respect to local 
body  frame  coordinates. We make  the following definitions (again,  all  quantities  are 
expressed  in the corresponding  local  body fixed coordinates):  let x E X6'l denote  the 
generalized  velocity of body i ,  F; E ?R6'l the  total generalized  force transmitted  from 
body i - 1 to  body i through  joint i with  its first three  components  corresponding  to 
the  moment  vector,  and T; the  applied  torque/force at joint i .  Also, let fiVl,; = Miesiqi 
denote  the  position  and  orientation of the body i frame  relative to  the  body i - 1 
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frame with M; E SE(3)  and S; = (w;,O) E se(3)  (here w; 
axis of rotation of joint i ) .  Further J; E !R6x6 is defined as 

is a unit vector  along the 

(12) 

where mi is the  mass of body i ,  ri is the vector  in body i coordinates  from  the origin 
of the  body i frame  to  the  center of mass of body i ,  and 1; is the  inertia  tensor of 
body i about  the  center of mass.  Here 1 denotes  the 3 x 3 identity  matrix. 

The recursive  Newton-Euler  algorithm  can now be  expressed  in  terms of our  earlier 
geometric definitions in  the following manner: 

Initialization 
Given : Vo, G ,  F,+1 

Forward recursion: for i = 1 to n do 

f . = 1Miese94i i-1,2 

V ,  = A d , - 1  , (X-1) + S;@i 

Q = Si& + Ad,,l , ( q - 1 )  

t-1,t 

t - l , e  

- a d s , i , A d f - 1  ,(x-I) 
e - l , e  

Backward  recursion: for i = n to 1 do 

F; = Ad* j - 1  (Fi+l) + J iK  
% , S t 1  

J;V,) 
T; = STF; 

Here Vo and V o  denote  the generalized  velocity and  acceleration of the  base  re- 
spectively, and F,+1 (assumed  to  be zero in the sequel) denotes  the generalized  force 
acting at the  tip of the  multibody chain. The recursive algorithm  presented  above 
is valid for open  chain  multibody  systems consisting of bodies  connected  via single 
degree-of-freedom joints (e.g., revolute or prismatic  joints).  These  assumptions  can 
be relaxed and  the  above  algorithm  can  be  extended  to  multibody  systems  with  arbi- 
trary  tree-topology  structure  and  multi-degree-of-freedom  joints. (See [la] for further 
information.)  Although not discussed here,  the  above recursive algorithm is also com- 
pletely  independent of the reference frames chosen to express the  equations of motion. 
See [12] for more  details. 

3.2 Global  Matrix Representation of the Newton-Euler Al- 
gorit  hm 

By  expanding  the  individual  equations (15)-( 18) and  rearranging it can  be shown 
that the recursive  Newton-Euler  algorithm  admits the following global matrix  repre- 
sentation: 

V = GSq+GPoK (19) 
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V = GSq + GadsirV + GadsiPo& + GPO% 
F = GTJV + GTad; J V  
T = STF 

where 

V = column[&, h, - .  , Vn] E ? P n x 1  

F = column[.Fl, Fz ,  . , Fn] E 
4. = column[&, 42,. . , in] E 

r = column[q,72,. .-  , T ~ ]  E %nxl 

P o  = column[Ad,-l, 0 ,1  0, - , 01 E %6nX6 

S = diag[S1,Sz,. . , Sn] E %6nXn 

J = diag[JI, Jz,. . . , Jn] E % 6nx6n 

ads4 = diag[-ads,i,, , -adsnin] E %6nx6n 

adv = diag[-ac&, , -advn] E 

Here r E is given by 

- 0  0 . . .  0 0 

Ad,:l 0 . . .  0 0 
1 2  

r =  0 Ad,:' 2 3  e - .  0 0 

0 0 . AdJ-l 0 - n-1,n 

Note  that  the eigenvalues of r are  identically zero. As a result r is a nilpotent  matrix, 
viz. r" = 0, and  it  can easily be shown that G = ( I  - r)-' = 1 + r + e + Fn-l. As 
a result, 

where 1 6 x 6  denotes  the 6 x 6 identity  matrix. 

denotes  the  gravity vector in  appropriate  units  and  direction. 
In the sequel we will assume  that & = 0 and  that V o  = (0,g) where g E %3 

Combining  (19)-(22),  the  equations of motion  can  be  expressed  as 

"4; + C(Q,  44. + 4%) = 7, (23) 
where 

M ( q )  = S G J G S  T T  

T T  
(24) 
(25) 

d ( 4 )  = S ~ G ~ J G P ~ V ~  (26) 
C(q, 4.) = S G (JG  ads$?  + advJ )GS 
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The  above  matrix  factorization of the  equations of motion is an explicit matrix 
representation of the O(n)  recursive dynamics  algorithm.  One of the  most useful 
structural  features of the above  equations is the  transparent  manner in  which the 
parameters of the  multibody  system  appear; for example, in the  factorization of the 
mass  matrix all the  inertial  parameters  are  contained in the  constant  block-diagonal 
matrix J ,  while S is a constant  matrix  containing  only  the  kinematic  parameters,  and 
G is the only  matrix  dependent  on  the q;. 

4 Differentiation of the  System Mass Matrix 
For many  applications in dynamics  and control the ability to differentiate the  equa- 
tions of motion at a high-level is  of paramount  importance.  In  this section we demon- 
strate that the  equations of motion  resulting  from  our Lie group  formulation of multi- 
body  dynamics  can  be differentiated  in a straightforward  manner:  This  property is 
a  consequence of the fact that the basic mathematical  primitive  on which the  entire 
geometric  formulation is based is the  matrix  exponential,  and it is well known from 
linear  systems  theory that the derivative of eAt with respect to t is simply AeAt .  (The 
ability to differentiate the  equations of motion  explicitly is not  unique to  our geo- 
metric  formulation of dynamics. As shown  in [6] the  spatial  operators of Rodriguez 
e t  al [13] can also be differentiated at a high level. However, differentiation of the 
spatial  operators is  less transparent  because  the  spatial  operator  framework  is  not 
formulated in terms of matrix  exponentials.) 

It follows from  the expression for M given in (24)  that $M = d(STGT d t  JGS) .  
Recalling that both S and J are  constant  matrices it immediately follows that n/r = 
STGTJGS + STGTJGS. From  comparing ( 1 9 )  and (20)  we find 

G = GadsirG  (27) 

and  therefore 
h f  = STGTrTad&GTJGS + STGTJGadsirGS (28)  

5 Skew-Symmetry of the Newton-Euler Algorithm 
In  this  section we address  the  main  topic of this  article.  Although  an explicit formula 
for the  Coriolis/centrifugal  matrix is given in (25 )  this  particular  realization of C does 
not  render h f  - 2C skew-symmetric. To see this, we use (25 )  and (28)  and find 

&I - 2C = N - NT - 2STGTad;JGS (29)  

where N = STGTrTad&GTJGS. As N - NT is clearly skew-symmetric,  the skew- 
symmetry of n/r - 2C depends  on  the  skew-symmetry of the  operator ad; J E %6nX6n. 

A straightforward  calculation using the definitions of advJ and J given in  section 
3 along with (7)  and ( 1 2 )  demonstrates  that  this  operator is not skew-symmetric 
because  the  matrices --aCVi J; are  not  skew-symmetric. 
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Using our Lie group  formulation it is clear that C fails to  be  skew-symmetric be- 
cause the  individual  Newton-Euler  equations for each  body  do  not  themselves  satisfy 
the  skew-symmetry  property ( j ;  - 2C;) = - ( j ;  - 2C;). To see this, recall from (17) 
that  the Newton-Euler  equations for the ith body in the  multibody  system  are 

T 

F; - Ad;-, (F;+l) = J;G + C;K (30) 

where C; = -aCKJ; E %6x6 .  Since J; is a constant  matrix  the  skew-symmetry 
requirement for the  individual  Newton-Euler  equations for each  body  reduces to CT = 
-C;, As discussed  above C; = -adviJ; is not a skew symmetric  matrix,  and  as a 
result ad; J = diag[Cl, a e e , Cn] E also fails to  be  skew-symmetric.  Therefore, 
it is clear that the global matrix  factorization of the recursive algorithm  inherits 
the  skew-symmetry  property  from  the  equations of motion  on  the  individual  body 
level. As a result, in order to satisfy the  skew-symmetry  requirement a modified 
Coriolis/centrifugal  matrix  in (30), say C;, satisfying CT = -C; must  be  constructed. 
To this  end, we present  the following result: 

Proposition 1 

e + t 1  

C;K = C;K 
where C; = -aGi J; and  the skew-symmetric  matrix C; is given b y  

Here I; = I; - rn;[r;] . 2 

Proof It follows from (7) and (12) that 

Expanding  out (31) and using the definition of 7; results in 

[ 
- 

C;K = [a;] I;w; + m; [w;] [r;] v; - m; [v;] [r;] w; + m; [v;] v; 
--mi [w;] [r;] w; + m; [w;] vi 

Recalling that [v;] v; = v; X v; = 0, -m; [v;]  [r;] w; = m; [v;] [w;] r; and  applying the 
Jacobi  identity [a] [b] c + [b] [e] a = - [e]  [a] b to rn; [w;] [r;] v; + m; [v;] [w;] r;  yields 

[ [w;] 1;w; + m; [r;] [w;] v; + 7; [ai] w; c;v, = 
--mi [w;]  [r;] w; + mi [w;] v; 1 (33) 

Note  that we have  added zero to  the above  expression by appending 1; [w;] w; = 0. 
Rearranging (33) it  immediately follows that 

which proves the  result. 0 
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Although Lin e t  al [5] independently  demonstrated  that  the  skew-symmetry of 
A? - 2C is inherited  from  the  skew-symmetry of J ;  - 2Ci, the  derivation  presented 
above is a more  explicit  statement of this  result. 

Using the definition of C; given in Proposition 1 the recursive algorithm (13)-(18) 
can  be  made  to satisfy the  skew-symmetry  requirement by replacing C; = -ad;; J; 
in (17) with c; as given in Proposition 2. Next,  upon  repeating  the  steps  leading 
from  the recursive algorithm (13)-(18) to (23), it can  be shown that  the  equations of 
motion  are 

“4; + C(Q7 44. + d(a) = 7- (35) 

M ( Q )  = S ~ G ~ J G S  (36) 

(37) 
(38) 

where 

C ( Q ,  Q )  = S G (JGadsir + C)GS T T  

T T  $ ( Q )  = S G JGPoK 

and C = diag[CI, C 2 , .  , C n ]  E where the C ;  are as given in  Proposition 1. 
Note  that C is a skew-symmetric  matrix by construction. 

Proposition 2 I f C  is dejned as in (37) then A? - 2C = - ( A ?  - 2C) 

Proof: Recalling from (28 )  that I$ = STGTrTad&CTJGS + STGTJGadsql?GS 
it is straightforward to show that - 2C = N - NT - 2STGTCGS where N = 
STGTrTad&GTJGS. Therefore ( A ?  - 2C)T = NT - N - 2STGTCTGS. Since C T  = 
- C ,  the result follows. 0 

The proof given in Proposition 2 demonstrating  the  skew-symmetry of A? - 2C 
is based  entirely on high-level matrix  manipulations:  This is in  contrast  to  the proof 
given in [5] which is based  on a less direct  approach involving index  notation  and 
multiple  summations. 

T 

6 Conclusion 
In  this  article we have  presented a version of our Lie group  based  multibody  dynamics 
algorithm which satisfies the  skew-symmetry  property  required  in a variety of con- 
trol  applications in  robotics and  structural  dynamics. We have  shown that  the Lie 
group  formulation of dynamics  leads  to explicit factorizations of both  the  mass  and 
Coriolis matrices.  Furthermore, we have  demonstrated  that  the  mass  matrix  can  be 
differentiated  explicitly  with respect to time.  The  resulting expressions for Ad,&!, and 
C immediately  lead  to a proof of the skew-symmetry of M - 2 C  based  entirely  on 
high-level matrix  manipulations. 
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